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Abstract. Video quality assurance is an important topic in obstetric
ultrasound imaging to ensure that captured videos are suitable for biom-
etry and fetal health assessment. Previously, one successful objective
approach to automated ultrasound image quality assurance has consid-
ered it as a supervised learning task of detecting anatomical structures
defined by a clinical protocol. In this paper, we propose an alternative
and purely data-driven approach that makes effective use of both spatial
and temporal information and the model learns from high-quality videos
without any anatomy-specific annotations. This makes it attractive for
potentially scalable generalisation. In the proposed model, a 3D encoder
and decoder pair bi-directionally learns a spatio-temporal representa-
tion between the video space and the feature space. A zoom-in module is
introduced to encourage the model to focus on the main object in a frame.
A further design novelty is the introduction of two additional modalities
in model training (sonographer gaze and optical flow derived from the
video). Finally, our approach is applied to identify high-quality videos
for fetal head circumference measurement in freehand second-trimester
ultrasound scans. Extensive experiments are conducted, and the results
demonstrate the effectiveness of our approach with an AUC of 0.911.

1 Introduction

Ultrasound imaging is widely used in obstetrics for fetal health assessment due to
its portability, low cost, and free radiation. The high dependence on experience,
and intra- and inter-observer variability is also well known. For example, it can
be difficult for trainee sonographers to localize the appropriate plane for diag-
nosis because of fetal movement and acoustic shadowing, and even experienced
sonographers can struggle to acquire good diagnostic images for subjects with

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): MICCAI 2022, LNCS 13434, pp. 228-237, 2022.
https://doi.org/10.1007/978-3-031-16440-8_22


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16440-8_22&domain=pdf
https://doi.org/10.1007/978-3-031-16440-8_22

Towards Unsupervised Ultrasound Video Clinical Quality Assessment 229

poor acoustic windows. Assessment and audit of video quality is recommended
in clinical guidelines. However, this has to be done by an experienced sonog-
rapher which is very time-consuming and labour-intensive and takes clinicians
away from treating patients. Despite its importance to clinical practice, hardly
any research has been reported on automated video clinical quality assessment.

In this paper, we are interested in video clinical quality assessment which is
task-specific for biometric measurement. High clinical quality means the video
is suitable for further measurement and analysis. A novel data-driven approach
is proposed by learning a model of video quality assessment directly from high-
quality data. Our approach learns the spatio-temporal representation between
the video and feature space bi-directionally with a reconstruction-based anomaly
detection pipeline. The intuition is that a low-quality sample can be detected
by its associated large reconstruction error as the sample is not present in the
training data. Different from existing supervised image quality assessment meth-
ods for ultrasound [1,8,15], our approach makes effective use of both spatial and
temporal information and the model learns from high-quality videos without any
anatomy-specific annotations. These characteristics make our approach attrac-
tive for clinical quality assessment tasks where anatomical annotations are often
rare and inaccessible. The contributions of this paper are summarized as follows:
(1) To the best of our knowledge, our approach is the first video-based clinical
quality assessment method that does not depend on clinical protocol definitions
and anatomical annotations. (2) Bi-directional reconstruction between the video
and feature spaces prompts our model to learn an informative representation
of high-quality data. (3) We propose to use multi-modality data (i.e., optical
flow & gaze) in the training stage with the help of an input generator and an
auxiliary prediction branch, respectively. This prediction branch further enables
our model to highlight informative structures by the predicted gaze.

2 Related Work

Image quality assessment has been studied extensively in image processing with
various assessment metrics proposed such as PSNR, SSIM [14], and FID [5].
These image quality metrics focus on image clarity and noise removal. The def-
inition of quality assessment in ultrasound is different in that it needs to factor
in clinical context; it is task-specific and aims to ensure that a frame is use-
ful for diagnosis. Prior work has mainly aimed to automate the clinical criteria
checklist specified in clinical scanning protocol guideline standards. Early work
is reported in [11] and [16]. Wu et al. [15] propose two convolutional networks
to locate the ROI and detect two anatomies of the fetal abdomen in the 2nd
trimester, where a quality score is based on the appearance of the ROI and
anatomies. A multi-task Fast R-CNN based quality assessment network for scor-
ing head images is described in [8,9]. In [1], a three-step framework is proposed to
give a quality score for the fetal cardiac plane. Firstly, the cardiac four-chamber
planes are detected and then a detection network locates the anatomical struc-
tures. The authors also propose a classification network that considers two other
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indices (i.e., view zoom and gain), which is not used in previous studies. A semi-
supervised approach using metric learning is proposed in [4] for selecting head
planes in low-cost ultrasound probe video. In [12], the authors propose a rein-
forcement learning method to select images which are amenable to a target task.
Although it is not based on clinical criteria, detailed anatomical annotations
are still required in training. A recent evaluation of a real-time Artificial Intelli-
gence (AI) based system that automatically keeps track of acquired images and
checks images conform to imaging protocol standards is reported in [17] where
five experienced sonographers are used as the reference. A specified pre-defined
protocol and annotated locations of anatomical structures are required in the
aforementioned methods, which limits transferability to new applications.

rccV
(] .
(]
Zoom-in | . / Q“L £
/ -
o L N
O T | Video =
-O ~—
S g g ’ | qa e 8
=S
55| ; [
Raw video &% Optical flow | adv

(a) Training stage

Reconstruction error for classification

/

Zoom-in | __
module

!

} Video

Tnception | ..
Affine S
Transform
X

S
2
—E
<

s2
=0
2. 80
Q

Optical flow

Raw video

(b) Test stage (¢) Zoom-in module

Fig. 1. Flowchart of our approach. (a) Training stage with bi-directional reconstruction
loop in video and feature spaces. (b) Test stage with feature reconstruction error for
classification. (c) Details of the zoom-in module.

3 Method

Our approach assesses clinical quality of ultrasound videos using only qual-
ified scans without anatomical annotation. We formulate the video quality
assessment task as an anomaly detection problem, where low-quality video is
regarded as anomalous data. Denote the training dataset as D with N high-
quality training samples only, i.e., D = {x;,....,xn}, and a test set Dy, i.e.,
De = {(xty,Y1)s s (Ttpy, Yty )} where y € {0,1} indicates a video label (0 for
high quality and 1 for low quality). Our goal is to train a model to learn the
distribution of high-quality videos from the training dataset D and to identify
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the low-quality video in the test dataset D; as anomalous. A three-dimensional
encoder G, and decoder G4 pair is proposed to learn the spatio-temporal repre-
sentation. The bi-directional information flow between video space and feature
space provides feedback for the model during training. This information allows
the high-quality data feature representation to be informative and discriminative
from that of the low-quality data.

3.1 Model Structure

The pipeline of our approach is shown in Fig. 1. For each given ultrasound video,
the main object of interest (e.g., fetal head) is first extracted by the pre-trained
zoom-in module. An optical flow generator is followed to estimate an optical
flow field describing displacement from the zoomed-in video, which serves as the
second modality input in our model. An encoder G, and decoder G4 pair with
3D convolutional layers is adopted to learn spatio-temporal features from both
video-based modalities. Two adversarial reconstruction processes are performed
bi-directionally between the video and feature spaces with different alternative
combinations of G, and G4. Besides video and optical flow, a third modality,
gaze, is used by an auxiliary branch to predict where a sonographer looks. Feature
reconstruction error is used as the indicator to recognize low-quality data as this
will have a large reconstruction error.

Spatial Zoom-In Module and Optical Flow Generator. The goal of the
zoom-in module is to extract the spatial region of interest in a video frame. As
shown in Fig. 1(c), the original ultrasound video may contain fetal structures
(e.g., head) with a low field-of-view occupancy. This may mislead the model as
the background has a major influence on overall reconstruction error. Inspired
by [6], a zoom-in module is introduced to locate and transform the image to
center the region of interest around the fetal structure. Inside the zoom-in mod-
ule, we use InceptionV1 [13] to learn its affine transformation parameters. This
plug-in module is pre-trained with approximate bounding boxes around the fetal
structures and is fixed in the following stage. The optical flow generator is
developed to capture displacement patterns that characterize the appearance
of anatomical structures in videos. We employ the Farneback algorithm [3] with
a window size of 3 x 3 to generate a dense optical flow field. A median filter with
a kernel size of 21 x 21 is applied as pre-processing to reduce the effect of speckle
on optical flow field estimation.

Bi-directional Reconstruction Between Two Spaces. As shown in Fig.1
there are two directional reconstruction processes assisted by adversarial learn-
ing. One is video reconstruction following video — feature — video by G.—Gyg;
the second is feature reconstruction going along with feature — video — feature
by G4q—Ge. The encoder G, consists of eight 3D convolutional layers. The first
five layers are with kernel size 1 x 4 x 4 and stride 1 x 2 x 2 performing spatial
convolution, while the last three layers are with kernel size 4 x 4 x 4 and stride
2 x 2 x 2 performing spatio-temporal convolution leading to a bottleneck feature
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with size of 1024. The decoder G is with symmetrical structure but uses decon-
volutional layers instead. The bi-directional information flow helps the model
gain better understanding of high-quality videos. Two discriminators (i.e., Dy
and Dy) are also proposed in the video space and feature space, respectively,
for generating realistic high-quality data. The discriminator Dy, has the similar
structure of encoder and Dz consists of a stack of fully connected layers with
neurons from 64 to 1.

Auxiliary Gaze Branch. Eye-tracking data records sonographer gaze loca-
tions during scanning. Trying to predict gaze forces the model to learn the
salient regions of interest of high-quality video. To take full advantage of this
prior knowledge, we introduce an auxiliary decoder G4 with the same structure
as (G4, to learn gaze map. Compared with using the eye-tracking data as addi-
tional input, the training scheme as prediction eliminates the requirement for
gaze in the test phase. It also enables the model to provide guidance to novice
sonographers on where to look and which spatial parts are essential.

3.2 Objective Function

Training is supervised by the bi-directional reconstruction and gaze ground-
truth. The encoder G.(z,0) : V — F takes the video and optical flow as input
and transforms them into the feature space. The decoder G4(f) : F — V converts
the feature representation back into the video space. Zero-sum games are played
between G, G4 and the two discriminators. Our model is trained to solve the
following optimization function:

GIEiCI}d DIE?B(\; L= wadv‘cadv + Wrecﬁrec + wgaze£gaze7 (1)
where L;cc, Lgaze are the bi-directional reconstruction loss and gaze loss, respec-
tively. The adversarial loss function L4, is defined by the least-squares adver-
sarial loss:

Ladw = |DF(f) = 11> + |D#(Ge(x,0))]* + [Dy(x) — 11> + |Dy(Ga(f))]*, (2)

where x, o are the video and the optical flow, respectively, and f is the feature
vector sampled from a standard multivariate Gaussian distribution similarly as
in [7]. The adversarial loss aims to learn more realistic reconstructions in both
video and feature space by Dy, and D, respectively.

Reconstruction Loss. The reconstruction loss allows the encoder-decoder or
decoder-encoder models to learn spatio-temporal representations of high-quality
videos. Instead of the widely used pixel-wise L1 loss, the structure similarity
(SSIM) [14] loss is applied for a perceptual spatial constraint. The bi-directional
reconstruction loss L,... in the video space and feature space is defined as:

Lrec == LT‘CCV + LrecFa (3)

where Lyccv and Lyc.p are defined as: Lreey = 1 — SSIM (2, G4(Ge(z,0)) and
Lrcer = |Ge(Ga(f),0) — f|, respectively.
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Gaze Loss. We introduce a new loss function for the model to learn the gaze
saliency map. The gaze loss aims to minimize the difference between the gaze
prediction map and the ground truth and is defined as:

»Cgaze = |Gd’(Ge(x,O)) - g|7 (4)

where g is the eye gaze ground truth.

4 Experiment and Results

As part of the PULSE study [2], a dataset of 430 subjects with a resolution
of 1008 x 784, including video and gaze data, is used in our experiments. Dur-
ing a scan, an experienced sonographer finds and freezes a biometry plane. The
video clip consists of the frozen frame and 2s before freezing and is labeled by
the frozen frame type, e.g., transventricular plane (TVP), transcerebellar plane
(TCP), abdominal circumference plane (ACP). An approaching the transven-
tricular plane (aTVP) video clip is collected 5-7s before the frozen TVP frame.
We collect 430 high-quality TVP video clips (one clip per subject) and 181
low-quality clips. For training, 300 high-quality video clips (TVP) are randomly
selected, and the remaining 130 high-quality and 181 low-quality clips are used
for test. Each input sample to the model consists of 8 frames sampled from 2s
video clips at an 8-frame interval and is further resized to 256 x 256. Our app-
roach is implemented in PyTorch with a 12 GB TitanX GPU. ! The model was
trained for 200 epochs with an Adam optimizer and the learning rate is set to
0.0002, which is linearly decays to 0 in the last 100 epochs. The loss weights
Wadys Wree Were empirically set to 1 and 10, respectively, to make the value of
each loss stay at the same numerical level. The gaze loss weight wy,.. Was set to
0.1 based on a parameter study reported in the following section.

Figure 2 presents exemplar frames of high- and low-quality videos together
with their dense optical flow field estimated by the optical flow generator.
Observe that the different planes have different displacement patterns. For exam-
ple, for the TVP, the choroid plexus (CP) and brain midline region change the
most during scanning; for the TCP, the displacement pattern is high in the
cerebellum region. These patterns provide useful additional information for the
model to learn the feature representation of high-quality data.

Quantitative Results. We compare our approach with three single-modality
methods: a SpatioTemporal Auto-Encoder (STAE) [18], MNAD [10] and an
image-based approach which only takes the last frozen frame of the video clip
as input. MNAD is a video anomaly detection method which detects anoma-
lous frames in a video. It is obviously unsuitable for our task, thus leading to a
rather low performance. Table 1 compares these reference methods with variants
of our architecture in terms of the area under the ROC curve (AUC), Fl-score,
accuracy, sensitivity, and specificity. For all performance metrics, there is a large

! Code is available at https://github.com/IBMEOX /UltrasoundVQA.
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Fig. 2. Exemplar frames and corresponding optical flow fields of high- and low-quality
videos from the output of the zoom-in module.

Table 1. Performance of different methods based on the zoomed-in videos with the
evaluation metric of AUC, F1 (%), ACC (%), SEN (%) and SPE (%).

Methods AUC F1 | ACC | SEN | SPE
Image-based 0.790 & 0.006 | 72.29 | 71.06 | 80.11 | 62.05

Single MNAD [10] 0.308 4+ 0.009 | 73.32 | 57.88 | 99.45 | 1.54
modality STAE [18] 0.824 & 0.009 | 80.46 | 76.07 | 84.61 | 64.18
Video only 0.863 & 0.005 | 82.66 | 78.78 | 86.90 | 67.47

Multiple Our | with Optical flow | 0.889 + 0.006 | 85.40 | 82.54 | 87.69 | 75.39
modalities | approach with Gaze 0.886 &+ 0.004 | 84.88 | 81.67 | 88.40 | 72.31
All modalities | 0.911 + 0.003 | 86.99 | 84.56 | 88.62 | 78.92

gap between the image-based and video-based methods, supporting a hypothesis
that temporal information is useful to assess clinical quality for clinical tasks.
This result is also explainable clinically, the last frozen frame is not always the
best diagnostic frame for biometry. The conclusion from this experiment is that
including temporal information is helpful to distinguish between task-specific
low-quality and high-quality videos. Among the video-based methods, our bi-
directional reconstruction approach performs better than single-modality video
reconstruction with an improvement of AUC by 4.8%. With the addition of
other data modalities, i.e., optical flow, and gaze, the AUC further increases
from 0.863 to 0.911, respectively. Moreover, simple perturbations (e.g., flipping,
adding Gaussian noise) are applied on test images leading to the AUC of 0.906,
which indicates the robustness of our approach. The paired t-test between our
approach and STAE [18] is performed with p-value of 8 x 10~°, which demon-
strates the statistically significant benefit of our approach.

Ablation Study. Experiments were performed to study the effect of model
components and parameter settings. The top panel of Table 2 demonstrates the
effectiveness of the zoom-in module. Observe that a significant improvement is
achieved by inclusion of the zoom-in module, with an AUC increase from 0.744 to
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0.889. The explanation for this improvement is that the zoom-in module forces
the encoder and decoder to concentrate on the essential region of the video
instead of reconstructing background pixels which are not of interest. The bottom
panel of Table 2 reports model performance for different wyq.. This additional
training guidance further improves the AUC performance of our model from
0.889 to 0.911.

Table 2. Ablation study performance summary of the zoom-in module and different
settings of the gaze loss weight. Note models are trained with inputs of video and
optical flow.

AUC F1 ACC |SEN |SPEC
w/o zoom-in module |0.744 |75.39 |70.85 | 86.25 |54.39
Zoom-in module 0.889 |85.40 |82.54 |87.69 | 75.39
Gaze loss | wgaze =0 | 0.889 |85.40 |82.54 |87.69 |75.39
Wgaze = 0.1/0.911 | 86.99 | 84.56 | 88.62 | 78.92
Wgaze = 0.5 0.899 | 85.87 | 82.96 | 88.95 74.62
Wgaze =1 | 0.888 [85.25 |82.64 | 86.19 | 77.69
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Fig. 3. Reconstruction error in feature space with respect to reconstruction method
and modality.

Figure 3 (a)—(c) report the mean and standard deviation of the feature space
reconstruction error for the high-quality data (i.e., TVP) and low-quality data
(i.e., aTVP, TCP, ACP). The strength of bi-directional reconstruction is demon-
strated in Fig. 3(a) and (b). The difference in reconstruction error using a single
directional model is very small. Therefore it is not as easy to distinguish between
high- and low-quality videos. Conversely, the bi-directional model shows a larger
error. The results demonstrate that more information can be learned by the
bi-directional reconstruction, thus leading to better performance. The effect of
using multi-modality in our model is reported in Fig.3(b) and (c). The differ-
ence in reconstruction error between low quality and high quality is small for
the single modality model, especially for aTVP which is the closest video clip to
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high-quality data. The margin between high- and low-quality data is greater for
the multi-modality case. We conclude that the model trained with multi-modal
data is able to better distinguish low-quality videos from high-quality videos,
compared with just modelling from video alone.

Fig. 4. Three examples of gaze prediction between two consecutive frames.

Gaze Prediction. Our model architecture uses eye gaze in an auxiliary branch
instead of an input which allows the model to filter low-quality videos and also
performs gaze prediction. Figure 4 shows three example gaze predictions on con-
secutive test frames. Observe that the gaze predictions mainly focus on the
cavum septi pellucidi (CSP) and choroid plexus (CP), which are two anatomical
structures that a sonographer pays attention to during scanning. The accuracy
of gaze prediction is approximate 89%, where most of the eye gaze falls on CP,
CSP, middle line, and the skull boundary.

5 Conclusion

In conclusion, we propose a data-driven method to assess ultrasound video clin-
ical quality. Our approach directly learns a model from high-quality data with-
out any anatomical annotations or protocol. The bi-directional reconstruction
between video space and feature space aids the model in learning a meaningful
representation of high-quality video. The addition of gaze and optical flow to
video improved model performance by providing additional information about
clinically important regions. Our approach provides a new idea to evaluate ultra-
sound video quality in a data-driven fashion without relying on data annotations.
It may be readily applied to different task-specific clinical video quality assess-
ment problems.

Acknowledgement. This paper is funded by the ERC (ERC-ADG-2015 694581

project PULSE), the EPSRC (EP/MO13774/1. EP/R013853/1), and the NIHR
Biomedical Research Centre funding scheme.

References

1. Dong, J., et al.: A generic quality control framework for fetal ultrasound cardiac
four-chamber planes. IEEE J. Biomed. Health Inform. 24(4), 931-942 (2019)



10.

11.

12.

13.

14.

15.

16.

17.

18.

Towards Unsupervised Ultrasound Video Clinical Quality Assessment 237

Drukker, L., et al.: Transforming obstetric ultrasound into data science using eye
tracking, voice recording, transducer motion and ultrasound video. Sci. Rep. 11(1),
1-12 (2021)

Farnebéck, G.: Two-frame motion estimation based on polynomial expansion.
In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363-370.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X 50

Gao, Y., Beriwal, S., Craik, R., Papageorghiou, A.T., Noble, J.A.: Label efficient
localization of fetal brain biometry planes in ultrasound through metric learning.
In: Hu, Y., et al. (eds.) ASMUS/PIPPI -2020. LNCS, vol. 12437, pp. 126-135.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60334-2 13

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs
trained by a two time-scale update rule converge to a local Nash equilibrium.
In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks.
In: Advances in Neural Information Processing Systems, vol. 28, pp. 2017-2025
2015

%(ingrla, D.P., Welling, M.: Auto-encoding variational Bayes. In: International
Conference on Learning Representations, pp. 1-14 (2014)

Lin, Z., et al.: Quality assessment of fetal head ultrasound images based on faster
R-CNN. In: Stoyanov, D., et al. (eds.) POCUS/BIVPCS/CuRIOUS/CPM -2018.
LNCS, vol. 11042, pp. 38-46. Springer, Cham (2018). https://doi.org/10.1007 /978~
3-030-01045-4 5

Lin, Z., et al.: Multi-task learning for quality assessment of fetal head ultrasound
images. Med. Image Anal. 58, 101548 (2019)

Park, H., Noh, J., Ham, B.: Learning memory-guided normality for anomaly detec-
tion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 14372-14381 (2020)

Rahmatullah, B., Sarris, 1., Papageorghiou, A., Noble, J.A.: Quality control of fetal
ultrasound images: Detection of abdomen anatomical landmarks using adaboost.
In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to
Macro, pp. 6-9. IEEE (2011)

Saeed, S.U., et al.: Learning image quality assessment by reinforcing task amenable
data selection. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI
2021. LNCS, vol. 12729, pp. 755-766. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-78191-0 58

Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1-9 (2015)

Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600-612 (2004)

Wu, L., Cheng, J.Z., Li, S., Lei, B., Wang, T., Ni, D.: FUIQA: fetal ultrasound
image quality assessment with deep convolutional networks. IEEE Trans. Cybern.
47(5), 1336-1349 (2017)

Yaqub, M., Kelly, B., Papageorghiou, A.T., Noble, J.A.: A deep learning solution
for automatic fetal neurosonographic diagnostic plane verification using clinical
standard constraints. Ultrasound Med. Biol. 43(12), 29252933 (2017)

Yaqub, M., et al.: 491 scannav® audit: an Al-powered screening assistant for fetal
anatomical ultrasound. Am. J. Obstet. Gynecol. 224(2), S312 (2021)

Zhao, Y., Deng, B., Shen, C., Liu, Y., Lu, H., Hua, X.S.: Spatio-temporal autoen-
coder for video anomaly detection. In: Proceedings of the 25th ACM International
Conference on Multimedia, pp. 1933-1941 (2017)


https://doi.org/10.1007/3-540-45103-X_50
https://doi.org/10.1007/978-3-030-60334-2_13
https://doi.org/10.1007/978-3-030-01045-4_5
https://doi.org/10.1007/978-3-030-01045-4_5
https://doi.org/10.1007/978-3-030-78191-0_58
https://doi.org/10.1007/978-3-030-78191-0_58

	Towards Unsupervised Ultrasound Video Clinical Quality Assessment with Multi-modality Data
	1 Introduction
	2 Related Work
	3 Method
	3.1 Model Structure
	3.2 Objective Function

	4 Experiment and Results
	5 Conclusion
	References




